Wednesday 13 June 2018

Biosciences Seminar Speaker 14 June 2018

Biosciences Seminar Series - Spring 2018
14 June 2018 - 1pm - Zoology Museum


Insect chemical communication: a nexus between behaviour and pest control

Dr Almudena Ortiz-Urquiza


Image by Dr Ray Wilson

The Biosciences Seminar Series continues for the Spring Term with a talk by Dr Almudena Ortiz-Urquiza from the Department of Biosciences at the University of Swansea (UK). Almudena is broadly interested in insect pathology and insect sensory ecology,with both fundamental and applied research interests. To do so Almudena uses comparative and evolutionary genomics and a combination of molecular and biochemical tools.


Abstract
My research combines insect pathology with the study of arthropod olfaction. I use comparative and evolutionary genomics and a combination of molecular and biochemical tools to i) address fundamental questions concerning the molecular basis of pathogenesis versus beneficial symbiosis, and ii) understand the process of chemoreception, and chemical ligand binding and transport in important vectors of disease-causing agents including the tsetse fly, Glossina morsitans, and the tick Ixodes ricinus

Beauveria bassiana is a broad-host-range insect pathogen able to infect more than 700 species of insects and other arthropods. Despite this, some insects, i.e. Tenebrionid beetles, remain recalcitrant to infection. Our analyses showed that these beetles have evolved cuticular chemical defenses against B. bassiana that include the production of antimicrobial quinones. In response, the fungus has the potential to develop mechanisms to detoxify the quinones via the action of quinone reductases. Our results provide an example of an arms race between an insect pathogenic fungus and a beetle, with beetle (antimicrobial) cuticular secretions and a fungal detoxifying enzyme as the competing components.


Perception of chemical signals is a critical component of the ability of arthropods to find food, locate mates, and avoid adverse conditions including predators and pathogens. Insect chemosensory proteins (CSPs) represent a class of soluble ligand carrier proteins some of which are found in the sensillar lymph of insect antennae and maxillary palps. Within the chemoreception organs, CSPs are considered to function in the capture and delivery of chemical ligands during olfactory signal transduction, shuttling odorants and other hydrophobic ligands to the chemosensory receptors. Subsets of CSPs are also found in other tissues, where they may mediate ligand sequestration and transport in various physiological processes, as well as mediating release of pheromones and other volatiles. We have characterized the ligand bind profiles of the five CSPs described in the tsetse fly Glossina morsitans. Each CSP displayed a unique ligand binding profiles, although extensive overlap was seen. Subsets of CSPs showed broader ligand recognition, whereas others were narrower in ligand binding preferences. These data reveal key aspects of the functionality of the tsetse fly CSPs by indicating the range of ligands that each protein can recognize.

 



Hope to see many of you - everyone most welcome to attend!


For the list of forthcoming seminars see here

No comments:

Post a Comment